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1. SUMMARY OF ADDRESSED TASKS AND ACCOMPLISHMENTS
We have addressed all objectives planned in the proposal. First, we proved asymptotic optimality
of the Generalized SLRT and the Adaptive SLRT for testing multiple composite hypotheses and
very general non-iid stochastic models as the probabilities of errors become small. The results are
indeed very general and include Markov, hidden Markov, state-space, and autoregression models
as particular cases. Second, we developed computationally efficient and nearly optimal tests for
detecting unstructured and structured patterns in multi-stream (sensor, channel) systems assuming
that data between channels are mutually independent but may be of a very general non-iid struc-
ture in channels, and that the number of affected channels is unknown and may vary from small to
large. Third, we developed a general Bayesian theory of quickest changepoint detection for general
non-iid stochastic models assuming a certain stability of the log-likelihood ratio (LLR) process ex-
pressed via the r-complete convergence of the LLR to a finite and positive number which can be
regarded as the Kullback–Leibler information number. Fourth, we developed a similar minimax
change detection theory modifying and relaxing previous results of Lai (1998) to complete conver-
gence of the LLR and considering novel classes of detection procedures that confine local maximal
conditional probability of a false alarm.

2. MAIN RESULTS

2.1. Asymptotic Optimality Properties of the Multihypothesis Sequential Tests

Consider the following problem of testing multiple composite hypotheses associated with gen-
eral non-iid stochastic models. Let (Ω,F ,Fn,Pθ), n = 1, 2 . . . , be a filtered probability space
with standard assumptions about monotonicity of the σ-algebras Fn. The vector parameter θ =
(θ1, . . . , θ`) belongs to a subset Θ̃ of `-dimensional Euclidean space. The sub-σ-algebra Fn =
FX
n = σ(Xn

1 ) of F is generated by the stochastic process Xn
1 = (X1, . . . , Xn) observed up to

time n. The hypotheses to be tested are “Hi : θ ∈ Θi”, i = 0, 1, . . . , N (N > 1), where Θi are
disjoint subsets of Θ̃. We will also suppose that there is an indifference zone Iin ∈ Θ̃ in which
there are no constraints on the probabilities of errors imposed. The indifference zone, where any
decision is acceptable, is usually introduced keeping in mind that the correct action is not critical
and often not even possible when the hypotheses are too close, which is perhaps the case in most,
if not all, practical applications. However, in principle Iin may be an empty set. The probability
measures Pθ and Pθ̃ are assumed to be locally mutually absolutely continuous. By pθ(Xn|Xn−1

1 ),
n > 1 we denote corresponding conditional densities which may depend on n.

A multihypothesis sequential test δ = (T, d) consists of the pair (T, d), where T is a stop-
ping time with respect to the filtration {Fn}n>0, and d = dT (XT

1 ) ∈ {0, 1, . . . , N} is an FT -
measurable (terminal) decision rule specifying which hypothesis is to be accepted once observa-
tions have stopped. Specifically, the hypothesis Hi is accepted if d = i and rejected if d 6= i,
i.e., {d = i} = {T <∞, δ accepts Hi}. The quality of a sequential test is judged on the basis of
its error probabilities and expected sample sizes or more generally on the moments of the sample
size. Let αij(δ,θ) = Pθ(d = j),θ ∈ Θi (i 6= j, i, j = 0, 1, . . . , N ) be the probability of accepting
the hypothesis Hj by the test δ when the true value of the parameter θ is fixed and belongs to the
subset Θi and let βi(δ, θ) = Pθ(d 6= i),θ ∈ Θi be the probability of rejecting the hypotheses Hi

3
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when it is true. Introduce the following two classes of tests

C([αij]) =

{
δ : sup

θ∈Θi

αij(δ,θ) 6 αij for all i, j = 0, 1, . . . , N, i 6= j

}
,

C(β) =

{
δ : sup

θ∈Θi

βi(δ,θ) 6 βi for all i = 0, 1, . . . , N

}
,

(1)

for which maximal error probabilities do not exceed the given numbers αij and βi.
The goal is to find tests that are nearly (asymptotically) optimal as αij → 0 and βi → 0 in

the sense of minimizing the expected sample size EθT or more generally higher moments of the
stopping time EθT

m, m > 1 for all parameter values θ ∈ Θ.
In the IPR for the grant at USC Tartakovsky (2013a), we designed an adaptive matrix sequential

likelihood ratio test (AMSLRT) based on one-stage delayed estimators of the unknown parameters
and proved its asymptotic optimality assuming the strong law of large numbers (SLLN) for the
log-likelihood ratio (LLR) processes. The advantage of this adaptive test over the generalized
sequential likelihood ratio test (GSLRT), which we consider below, is that the error probabilities
are easily controlled (upper-bounded). However, obviously the AMSLRT is inferior to the GSLRT
since there is loss of information at each stage, and this is expected to influence its performance
degradation especially in the vector case where the dimensionality of the parameter ` is relatively
large.

Below we show that the GSLRT is also asymptotically optimal.

2.1.1. The Multihypothesis Generalized Sequential Likelihood Ratio Test

Define the generalized LR statistics

Λ̂i
n =

supθ∈Θ

∏n
k=1 pθ(Xk|Xk−1

1 )

supθ∈Θi

∏n
k=1 pθ(Xk|Xk−1

1 )
=

∏n
k=1 pθ?n(Xk|Xk−1

1 )

supθ∈Θi

∏n
k=1 pθ(Xk|Xk−1

1 )
, i = 0, 1, . . . , N, (2)

where θ?n = arg supθ∈Θ pθ(Xn
1 ) is the MLE estimator. The Multihypothesis Generalized Sequen-

tial Likelihood Ratio Test (MGSLRT) is of the form

stop at the first n > 1 such that for some i Λ̂j
n > Aji for all j 6= i (3)

and accept the (unique) Hi that satisfies these inequalities, where Aij are positive and finite num-
bers (thresholds).

Note that the MGSLRT δ̂ = (T̂ , d̂) given by (3) can be also represented as follows:

T̂ = min
06i6N

T̂i, d̂ = i if T̂ = T̂i, (4)

where

T̂ = inf

n > 1 : ˆ̀
n > max

06j6N
j 6=i

[`jn + aji]

 , aij = logAij, i = 0, 1, . . . , N ; (5)

ˆ̀
n =

n∑
k=1

log pθ?n(Xk|Xk−1
1 ), `in = sup

θ∈Θi

n∑
k=1

log pθ(Xk|Xk−1
1 ).

4
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2.1.2. Near Optimality of the GSLRT

In the following, we will write α̂ij(θ) = αij(δ̂,θ) and β̂(θ) = βi(δ̂,θ) for the probabilities of
errors of the MGSLRT.

The developed asymptotic hypothesis testing theory is based on the SLLN and rates of conver-
gence in the strong law for the LLR processes, specifically by strengthening the strong law into the
r-quick version.

Definition 1. Let P be a probability measure and E the corresponding expectation. For r > 0, the
random variable Yn is said to converge P-r-quickly to a constant q if ELrε <∞ for all ε > 0, where
Lε = sup {n : |Yn − q| > ε} (sup∅ = 0).

Note that P(Lε <∞) = 1 for all ε > 0 is equivalent to the P-a.s. convergence of Yn to q.
Define the LLR process

λn(θ, θ̃) = log
dPnθ
dPn

θ̃

=
n∑
k=1

log
pθ(Xk|Xk−1

1 )

pθ̃(Xk|Xk−1
1 )

and assume that there exist positive and finite numbers I(θ, θ̃) such that

1

n
λn(θ, θ̃)

Pθ−r−quickly−−−−−−−→
n→∞

I(θ, θ̃) for all θ, θ̃ ∈ Θ, θ 6= θ̃. (6)

In addition, we certainly need some conditions on the behavior of the MLE θ?n for large n, which
should converge to the true value θ in a proper way. To this end, we require the following condition
on the generalized LR process:

1

n
log Λ̂n(θ̃)

Pθ−r−quickly−−−−−−−→
n→∞

I(θ, θ̃) for all θ, θ̃ ∈ Θ, θ 6= θ̃, (7)

so that the normalized by n LLR tuned to the true parameter value and its estimate converge to
the same constants. In certain cases, but not always, conditions (6) and (7) imply the following
conditions

1

n
log Λ̂i

n

Pθ−r−quickly−−−−−−−→
n→∞

Ii(θ) for all θ ∈ Θ \Θi, i = 0, 1, . . . , N, (8)

where Ii(θ) = inf θ̃∈Θi
I(θ, θ̃) (the minimal “distance” from θ to the set Θi) is assumed to be

positive for all i. Write αmax = maxi,j αij and βmax = maxi βi and define

Ji(θ) = min
06j6N
j 6=i

[Ij(θ)/cji] for θ ∈ Θi, J(θ) = max
06i6N

Ji(θ) for θ ∈ Iin, (9)

and
J∗i (θ) = min

06j6N
j 6=i

[Ij(θ)/cj] for θ ∈ Θi,

J∗(θ) = max
06i6N

min
06j6N
j 6=i

[Ij(θ)/cj] = max
06i6N

J∗i (θ) for θ ∈ Iin,
(10)

where
cij = lim

αmax→0
| logαij|/| logαmax|, ci = lim

βmax→0
| log βi|/| log βmax|.
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Theorem 2 below establishes uniform asymptotic optimality of the MGSLRT in the general
non-iid case with respect to moments of the stopping time distribution. The proof is based on the
technique developed by Tartakovsky (1998) for multiple simple hypotheses. It includes a two-step
procedure: first we obtain the asymptotic lower bounds for moments of the stopping time distri-
bution infδ∈C([αij ]) Eθ[T ]m, θ ∈ Θi, m > 0, i = 0, 1, . . . , N , and then we show that these lower
bounds are attained for the MGSLRT. The asymptotic lower bounds are given in the following
theorem.

Theorem 1 (Asymptotic Lower Bounds). Assume that there are positive and finite numbers I(θ, θ̃)
such that

1

n
λn(θ, θ̃)

Pθ−a.s.−−−−→
t→∞

I(θ, θ̃) for all θ, θ̃ ∈ Θ,θ 6= θ̃. (11)

Let Ii(θ) = inf θ̃∈Θi
I(θ, θ̃) and suppose min06i6N Ii(θ) > 0. Then, for all θ ∈ Θ and 0 < ε < 1,

inf
δ∈C([αij ])

Pθ {T > εAθ([αij])} → 1 as αmax → 0,

inf
δ∈C(β)

Pθ {T > εAθ(β)} → 1 as βmax → 0,
(12)

and therefore, for all m > 0 and θ ∈ Θ,

inf
δ∈C([αij ])

EθT
m > [Aθ([αij])]

m (1 + o(1)) as αmax → 0,

inf
δ∈C(β)

EθT
m > [Aθ(β)]m (1 + o(1)) as βmax → 0,

(13)

where

Aθ([αij]) =

{
| logαmax|/Ji(θ) for θ ∈ Θi and i = 0, 1, . . . , N

| logαmax|/J(θ) for θ ∈ Iin.

and

Aθ(β) =

{
| log βmax|/J∗i (θ) for θ ∈ Θi and i = 0, 1, . . . , N

| log βmax|/J∗(θ) for θ ∈ Iin.

Next, strengthening the SLLN (11) into the the r-quick version it can be shown that the lower
bounds (13) are attained by the MGSLRT if the thresholds are selected appropriately. The follow-
ing theorem spells out details.

Theorem 2 (MGSLRT Asymptotic Optimality). Assume that r-quick convergence conditions (6)
and (8) are satisfied.
(i) If the thresholds Aij are so selected that supθ∈Θi

α̂ij(θ) 6 αij and logAij ∼ log(1/αij), then
for m 6 r as αmax → 0

inf
δ∈C([αij ])

EθT
m ∼ Eθ[T ∗]m ∼

{
[| logαmax|/Ji(θ)]m for all θ ∈ Θi and i = 0, 1, . . . , N

[| logαmax|/J(θ)]m for all θ ∈ Iin,
(14)

where the functions Ji(θ), J(θ) are defined as in (9).

6
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(ii) If the thresholds Aij = Ai are so selected that supθ∈Θi
β̂i(θ) 6 βi and logAi ∼ log(1/βi),

then for m 6 r as βmax → 0

inf
δ∈C(β)

EθT
m ∼ Eθ[T ∗]m ∼

{
[| log βmax|/J∗i (θ)]m for all θ ∈ Θi and i = 0, 1, . . . , N

[| log βmax|/J∗(θ)]m for all θ ∈ Iin,
(15)

where the functions J∗i (θ), J∗(θ) are defined as in (10).
Consequently, the MGSLRT minimizes asymptotically the moments of the sample size up to

order r uniformly for all θ ∈ Θ in the classes of tests C([αij]) and C(β).

Remark 1. One of the most important issues is to obtain upper bounds and approximations for
error probabilities of the MGSLRT. However, we do not know how to upper-bound the error prob-
abilities of the MGSLRT. The reason is that the statistics Λ̂i

n are not likelihood ratios anymore so
that the change-of-measure argument (Wald’s likelihood ration identity) cannot be applied. Some
asymptotic approximations still can be obtained in the iid case for `-dimensional exponential fam-
ilies using large and moderate deviations:

sup
θ∈Θi

Pθ(d̂ = j) =
(logAji)

`/2

Aji
+O(1) as min

ij
Aij →∞ (16)

(cf. Chan and Lai (2000); Lorden (1977)). In the general non-iid case this is still an open problem.

Remark 2. The assertions of Theorem 2 remain true if the normalization by n in (8) is replaced
with the normalization by ψ(n), where ψ(t) is an increasing function, ψ(∞) = ∞, in which case
[| logαmax|/Ji(θ)]m in (14) should be replaced with Ψ([| logαmax|/Ji(θ)]m), where Ψ is inverse
to ψ, and similarly in (15).

2.2. Detection of Structured and Unstructured Patterns in Multiple Data Streams

Rapid signal detection in multistream data or multichannel systems is widely applicable. For ex-
ample, in the medical sphere, decision-makers must quickly detect an epidemic present in only
a fraction of hospitals and other sources of data Chang (2003); Sonesson and Bock (2003); Tsui
et al. (2012). In environmental monitoring where a large number of sensors cover a given area,
decision-makers seek to detect an anomalous behavior, such as the presence of hazardous mate-
rials or intruders, that only a fraction of sensors typically capture Fienberg and Shmueli (2005);
Rolka et al. (2007). In military defense applications, there is a need to detect an unknown num-
ber of targets in noisy observations obtained by radars, sonars or optical sensors that are typically
multichannel in range, velocity and space Bakut et al. (1963); Tartakovsky and Brown (2008). In
cyber security, there is a need to rapidly detect and localize malicious activity, such as distributed
denial-of-service attacks, typically in multiple data streams Szor (2005); Tartakovsky (2014); Tar-
takovsky et al. (2006a,b). In genomic applications, there is a need to determine intervals of copy
number variations, which are short and sparse, in multiple DNA sequences Siegmund (2013).

Motivated by these and other applications, we consider a general sequential detection problem
where observations are acquired sequentially in a number of data streams. The goal is to quickly
detect the presence of a signal while controlling the probabilities of false alarms (type-I error)
and missed detection (type-II error) below user-specified levels. Two scenarios are of particular
interest for applications. The first is when a single signal with an unknown location is distributed

7
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over a relatively small number of channels. For example, this may be the case when detecting
an extended target with an unknown location in a sequence of images produced by a very high-
resolution sensor. We call this the “structured” case, since there is a certain geometrical structure
we can know at least approximately. A different, completely “unstructured” scenario is when an
unknown number of “point” signals affect the channels. For example, in many target detection
applications, an unknown number of point targets appear in different channels (or data streams),
and it is unknown in which channels the signals will appear Tartakovsky (2013c). The multistream
sequential detection problem is well-studied only in the case of a single point signal present in
one (unknown) data stream Tartakovsky et al. (2003a). However, as mentioned above, in many
applications, a signal (or signals) can affect multiple data streams (e.g., when detecting an unknown
number of targets in multichannel sensor systems). In fact, the affected subset could be completely
unknown (unknown number of signals), or known partially (e.g., knowing its size or an upper
bound on its size such as a known maximal number of signals that can appear).

Our goal is to develop a general asymptotic optimality theory without assuming iid observa-
tions in the channels. Assuming a very general non-iid model, we focus on two multichannel
sequential tests, the Generalized Sequential Likelihood Ratio Test (G-SLRT) and the Mixture Se-
quential Likelihood Ratio Test (M-SLRT), which are based on the maximum and average likeli-
hood ratio over all possibly affected subsets respectively. We impose minimal conditions on the
structure of the observations in channels, postulating only a certain asymptotic stability of the cor-
responding log-likelihood ratio statistics. Specifically, we assume that the suitably normalized log-
likelihood ratios in channels almost surely converge to positive and finite numbers, which can be
viewed as local limiting Kullback–Leibler information numbers. We additionally show that if the
local log-likelihood ratios also have independent increments, both the G-SLRT and the M-SLRT
minimize asymptotically not only the expected sample size but also every moment of the sample
size distribution as the probabilities of errors vanish. Thus, we extend a result previously shown
only in the case of i.i.d. observations and in the special case of a single affected stream Tartakovsky
et al. (2003a). In the general case where the local log-likelihood ratios do not have independent
increments, we require a certain rate of convergence in the Strong Law of Large Numbers, which
is expressed in the form of r-complete convergence (cf. (Tartakovsky et al., 2014b, Ch 2)). Under
this condition, we prove that both the G-SLRT and the M-SLRT asymptotically minimize the first
r moments of the sample size distribution. The r-complete convergence condition is a relaxation
of the r-quick convergence condition used in Tartakovsky et al. (2003a) (in the special case of
detecting a single signal in a multichannel system). However, its main advantage is that it is much
easier to verify in practice. Finally, we show that both the G-SLRT and the M-SLRT are computa-
tionally feasible, even with a large number of channels, when we have an upper and a lower bound
on the number of signals, a general set-up that includes cases of complete ignorance as well as
cases where the size of the affected subset is known.

Suppose that observations are sequentially acquired over time in N distinct sources (data
streams, channels, sensors). We denote the observations in the kth data stream as Xk := {Xk

n}n>1,
k = 1, . . . , N . For every k, we assume that either Pk = Pk0 or Pk = Pk1, where Pk is the “true”
distribution of Xk and Pk1 and Pk0 are two locally equivalent probability measures on the canonical
space of Xk, i.e., Pk1 << Pk0 and Pk0 << Pk1 when both probability measures are restricted to
F k
t = σ(Xk

s ; 0 6 s 6 n) for some n > 0. We denote by Λk
n the Radon-Nikodým derivative

8
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(likelihood ratio) of Pk1 versus Pk0 given F k
n and by Zk

n the corresponding LLR, i.e.,

Λk
n =

dPk1
dPk0

∣∣∣∣∣
Fk
n

and Zk
n = log Λk

n.

One possible and useful interpretation is that there is “noise” in source k under Pk0 and “signal”
and noise otherwise (object/target appearance in noise). Alternatively, one may think about Pk0 as a
probability measure corresponding to a “normal” scenario, while Pk1 corresponds to an “abnormal”
scenario when the k-th data stream is affected by some event (malicious/unusual activity/behavior
in social networks, bio-chemical threat appearance, attacks in computer networks, etc.). We want
to test the global null hypothesis H0 : Pk = Pk0, 1 ≤ k ≤ N , according to which there is only noise
in all data streams, against the alternative that a signal is present in a subset of data streams that
belongs to a class P . Thus, the alternative hypothesis takes the form H1 := ∪A∈PHA1 , where the
distribution of Xk under HA1 is

Pk =

{
Pk0 when k /∈ A
Pk1 when k ∈ A

.

Assuming that the observations from different data streams are mutually independent, which will
be our standing assumption from now on, the distribution of X = (X1, . . . , XK) under H0 is
described by the product measure P0 = P1

0 × . . . × PN0 . On the other hand, the distribution of X
when signal is present in subset A takes the form

PA =
∏
k∈A

Pk1 ×
∏
k/∈A

Pk0.

Equivalently, for any given n and subset A ∈ P , we have:

ΛAn =
dPA

dP0

∣∣∣∣∣
Fn

=
∏
k∈A

Λk
n.

The goal is to find a pair δ = (T, d) that consists of an {Fn}-stopping time T and an FT -
measurable random variable d taking values in {0, 1}, so that Hi is selected on {d = i, T < ∞},
i = 0, 1, where {Fn} is the filtration generated by all sources of observations, i.e.,

Fn = ∨
1≤k≤N

F k
n = σ(Xk

s ; 0 6 s 6 n, 1 ≤ k ≤ N).

Specifically, the goal is to find a sequential test that (a) controls type-I and type-II error probabilities
below α and β, respectively, i.e., belongs to the class of tests

Cα,β(P) = {δ : P0(d = 1) ≤ α and sup
A∈P

PA(d = 0) ≤ β},

and (b) it is asymptotically optimal as α, β → 0 in the sense that it attains

inf
(τ,d)∈Cα,β(P)

E0T and inf
δ∈Cα,β(P)

EAT ∀ A ∈ P .

9
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More generally, we are interested in establishing conditions under which a specific sequential test
δ0 = (T0, d0) is first-order asymptotically optimal with respect to higher moments of the stopping
time distribution, i.e., for all 0 < m 6 r and some r > 1

lim
α,β→0

inf
δ∈Cα,β(P)

E0T
m

E0Tm0
= 1 and lim

α,β→0

inf
δ∈Cα,β(P)

EATm

EATm0
∀ A ∈ P .

Of course, the answer to this question depends heavily on the class of alternatives P . We will
only assume that there is a lower bound (m > 1) and an upper bound (m 6 N ) on the cardinality
of the subset of affected data streams, i.e.,

P = {A : m 6 |A| 6 m}. (17)

This sequential testing problem is well understood when the signal can be present in at most
one data stream (m = 1). Specifically, in this case, the optimality of the GSLRT was established
by Tartakovsky et al. (2003b) under general conditions on the underlying distributions.

In this project, we propose the GSLRT and the Weighted SLRT (WSLRT) that are feasible
for a large number of data streams on one hand and asymptotically optimal on the other hand. In
addition, error probabilities of these tests can be explicitly controlled.

2.2.1. Asymptotic Optimality of the G-SLRT

We begin with establishing lower bounds for moments of the stopping time distribution. Recall that
we consider very general non-iid models for the observations (Xk

n)n>1 in “channels,” so the LLR
processes Zk

n, k = 1, . . . , N have no particular structure. However, to obtain some meaningful
results certain assumptions have to be made. We formulate these assumptions in the form of a
certain stability of the behavior of the LLRs for large n. Specifically, in the following we suppose
that there are positive and finite numbers Ik0 and Ik1 such that the normalized LLRs n−1Zk

n, k =
1, . . . , N converge in probability to −Ik0 under Pk0 and to Ik1 under Pk1,

1

n
Zk
n

Pk0−−−→
t→∞

−Ik0 ,
1

n
Zk
n

Pk1−−−→
t→∞

Ik1 , k = 1, . . . , N, (18)

in which case also
1

n
ZAn

P0−−−→
t→∞

−IA0 ,
1

n
ZAn

PA1−−−→
t→∞

IA1 ,

where

IA0 =
∑
k∈A

Ik0 and IA1 =
∑
k∈A

Ik1 . (19)

The following theorem establishes asymptotic lower bounds for all positive moments of the
stopping time distribution in the class Cα,β(P). We write αmax = max(α, β).

Theorem 3. Assume there exist positive and finite numbers Ik0 and Ik1 such that, for all ε > 0 and
k = 1, . . . , N ,

lim
M→∞

Pk1

{
1

M
max

16n6M
Zk
n > (1 + ε)Ik1

}
= 1,

lim
M→∞

Pk0

{
1

M
max

16n6M
(−Zk

n) > (1 + ε)I0

}
= 1.

(20)
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Then, for all m > 0,

lim inf
αmax→0

inf
δ∈Cα,β(P)

E0T
m

| log β|m
>

(
1

minA∈P IA0

)m
,

lim inf
αmax→0

inf
δ∈Cα,β(P)

EATm

| logα|m
>

(
1

IA1

)m
.

(21)

When P = {A}, i.e., there is no uncertainty regarding the subset of streams in which the signal
may be present, the asymptotic lower bounds (21) are attained by the Sequential Probability Ratio
Test (SPRT),

τAa,b = inf{n > 1 : ZAn /∈ (−a, b)}, dA =

{
1 when ZAτA ≥ b

0 when ZAτA ≤ −a
, (22)

under r-quick convergence conditions for the LLRs, which can be deduced from Lai (1981); Tar-
takovsky (1998); Tartakovsky et al. (2014a). To be specific, for ε > 0, introduce the last entree
times

Lk0(ε) = sup
{
n > 1 : |n−1Zk

n + Ik0 | > ε
}

and Lk1(ε) = sup
{
n > 1 : |n−1Zk

n − Ik1 | > ε
}

(sup {∅} = 0) and assume that for some r > 0,

Ek0[Lk0(ε)]r <∞ and Ek1[Lk1(ε)]r <∞, k = 1, . . . , N. (23)

According to Definition 1, conditions (23) mean that the normalized LLRs n−1Zk
n, k = 1, . . . , N

converge to −Ik0 and Ik1 r-quickly under Pk0 and Pk1, respectively.
Obviously, conditions (23) imply the corresponding r-quick convergence of n−1ZAn :

E0[LA0 (ε)]r <∞ and EA[LA1 (ε)]r <∞, (24)

whereLA0 (ε) = sup
{
n > 1 : |n−1ZAn + IA0 | > ε

}
andLA1 (ε) = sup

{
t > 1 : |n−1ZAn − IA1 | > ε

}
.

If the thresholds b and a are selected so that (τA, dA) ∈ Cα,β(A) and b ∼ | logα|, a ∼ | log β|,
in particular b = | logα| and a = | log β|, then using (Tartakovsky et al., 2014a, Theorem 3.4.2)
yields, for all 0 < m 6 r as αmax → 0,

inf
δ∈Cα,β(A)

E0[τ ]m ∼ E0[τA]m ∼
(
| log β|
IA0

)m
,

inf
δ∈Cα,β(A)

EA[τ ]m ∼ EA[τA]m ∼
(
| logα|
IA1

)m
.

(25)

When P is not a singleton, it is natural to apply a generalized likelihood ratio approach and
consider the G-SLRT δ̂a,b = (T̂a,b, d̂) given by

T̂a,b = inf

{
n > 1 : max

A∈P
ZAn /∈ (−a, b)

}
,

d̂ =

1 when max
A∈P

ZAτ̃ ≥ b

0 when max
A∈P

ZAτ̃ ≤ −a
.

(26)
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This test was considered by Tartakovsky et al. (2003b) where its asymptotic optimality was estab-
lished in the special case that signal can be present in only a single data stream, i.e., P = {A :
|A| = 1}. Theorem 4 below is a generalization of this result for an arbitrary class of alternatives
P .

The following lemma gives upper bounds on the error probabilities of the G-SLRT, which
suggest threshold values that guarantee the target error probabilities. This lemma does not require
any assumptions on the local distributions. Let |P| = CN denote the cardinality of class P , i.e.,
the number of possible alternatives in P . Note that |P| takes its maximum value when there is no
prior information regarding the subset of affected channels (PN ), in which case |P| = 2N − 1.

Lemma 1. For any thresholds a, b > 0,

P0(d̂ = 1) 6 |P| e−b and max
A∈P

PA(d̂ = 0) 6 e−a. (27)

Therefore, for any target error probabilities α, β ∈ (0, 1), we can guarantee that (τ̂ , d̂) ∈ Cα,β(P)
when thresholds are selected as

b = | log(α/|P|)| and a = | log β|. (28)

Theorem 4. Let the thresholds b and a in the GSLRT (26) be chosen so that δ̂a,b ∈ Cα,β(P) and
b ∼ | logα|, a ∼ | log β| as αmax → 0, in particular b = | logα/|P|| and a = | log β|. If, for some
r > 0, the conditions (23) hold, i.e.,

1

n
Zk
n

Pk1−r−quickly
−−−−−−−→

t→∞
Ik1 and

1

n
Zk
n

Pk0−r−quickly
−−−−−−−→

t→∞
−Ik0 , k = 1, . . . , N, (29)

then, for any class of alternatives P and all 0 < m 6 r as αmax → 0,

E0T̂
m ∼

 | log β|
min
A∈P

IA0

m

∼ inf
δ∈Cα,β(P)

E0T
m, (30)

and for every A ∈ P ,

EAT̂m ∼
(
| logα|
IA1

)m
∼ inf

δ∈Cα,β(P)
EATm. (31)

Definition 2. Let r > 0. We say that the sequence (Yn)n>1 converges r-completely under proba-
bility measure P to a constant q as n→∞ and write

Yn
P−r−completely−−−−−−−−→

n→∞
q

if
∞∑
n=1

nr−1P (|Yn − q| > ε) <∞ for all ε > 0.

12
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This condition turns out to be weaker than the corresponding r-quick convergence (in general),
and more importantly it is easier to check the complete convergence condition than r-quick con-
dition. Therefore, as a next step, it is natural to replace conditions (29) with the corresponding
r-complete convergence conditions for the LLRs:

1

n
Zk
n

Pk1−r−completely
−−−−−−−−−→

n→∞
Ik1 and

1

n
Zk
n

Pk0−r−completely
−−−−−−−−−→

n→∞
−Ik0 , k = 1, . . . , K, (32)

i.e., that for all ε > 0 and all k = 1, . . . , N ,
∞∑
n=1

nr−1Pk1

(∣∣∣∣ 1nZk
n − Ik1

∣∣∣∣ > ε

)
<∞,

∞∑
n=1

nr−1Pk0

(∣∣∣∣ 1nZk
n + Ik0

∣∣∣∣ > ε

)
<∞. (33)

The following theorem spells out details.

Theorem 5. Let the thresholds b and a in the GSLRT (26) be chosen so that δ̂a,b ∈ Cα,β(P) and
b ∼ | logα|, a ∼ | log β| as αmax → 0, in particular b = | logα/|P|| and a = | log β|. If, for some
r > 0, the r-complete convergence conditions (32) hold, then, for any class of alternatives P and
all 0 < m 6 r as αmax → 0,

E0T̂
m ∼

 | log β|
min
A∈P

IA0

m

∼ inf
δ∈Cα,β(P)

E0T
m, (34)

and for every A ∈ P ,

EAT̂m ∼
(
| logα|
IA1

)m
∼ inf

δ∈Cα,β(P)
EATm. (35)

We now consider a special case where the LLR increments `kn = Zk
n − Zk

n−1, n > 1 in the kth

channel are independent, but not necessarily identically distributed, random variables, and show
that the asymptotic optimality properties (34)–(35) hold true for any positive integer m, as long as
only the SLLN holds, i.e., as long as the almost sure convergence conditions

1

n
Zk
n

Pk1−a.s.
−−−−→
n→∞

Ik1 and
1

n
Zk
n

Pk0−r−a.s.
−−−−−→
n→∞

−Ik0 , k = 1, . . . , K, (36)

are satisfied. To this end, we need the following renewal theorem.

Lemma 2. Let ξk := (ξkt )t>1, 1 ≤ k ≤ N be (possibly dependent) sequences of random vari-
ables on some probability space (Ω,F ,P) and let E be the corresponding expectation. Define the
stopping time

ν(b) := inf

{
t > 1 : min

1≤k≤N
Skt > b

}
; Skt :=

t∑
u=1

ξku.

Suppose that for every 1 ≤ k ≤ N there is a positive constant µk such that Skt /t
a.s.−→ µk. Then, as

b→∞ we have
ν(b)

b

a.s.−→
(

min
1≤k≤N

µk

)−1

.

Moreover, the convergence holds in Lr for every r > 0, if each ξk is a sequence of independent
random variables and there is a λ ∈ (0, 1) such that

sup
t>1

E
[
exp{λ(ξkt )−}

]
<∞. (37)
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The following theorem establishes a stronger asymptotic optimality property for the G-SLRT
in the case of LLRs with independent increments.

Theorem 6. Let P be an arbitrary class of possibly affected subsets of channels and suppose that
the thresholds in the G-SLRT are selected so that δ̂a,b ∈ Cα,β(P) and b ∼ | logα|, a ∼ | log β|
as αmax → 0, in particular b = | logα/|P|| and a = | log β|. If the LLR increments, {`kn}n>1,
are independent over time under Pk0 and Pk1 for every 1 ≤ k ≤ N , then the asymptotic optimality
properties (34)–(35) hold true for any m > 1, as long as the almost sure convergence conditions
(36) hold.

2.2.2. Asymptotic Optimality of the M-SLRT

In this section, we propose an alternative sequential test that is based on averaging, instead of
maximizing, the likelihood ratios that correspond to the different hypotheses. We show that it has
the same asymptotic optimality properties and similar feasibility as the G-SLRT.

Let P be an arbitrary class, {pA}A∈P an arbitrary family of positive numbers that add up to 1
(weights) and consider the probability measure

P :=
∑
A∈P

pAP
A. (38)

Then the Radon-Nikodým derivative of P versus P0 given Fn is

Λn :=
dP

dP0

∣∣∣
Fn

=
∑
A∈P

pAΛAn =
N∑
n=1

∑
A∈P∩Pn

pAΛAn . (39)

If we replace the GLRo statistic Ẑn = maxA∈P Z
A
n in (26) by the logarithm of the mixture likeli-

hood ratio, Zn := log Λn, then we obtain the following sequential test:

τ = inf
{
n > 1 : Zn /∈ (−a, b)

}
, d :=

{
1 when Zτ ≥ b

0 when Zτ ≤ −a
, (40)

to which we refer as the Mixture Sequential Likelihood Ratio Test (M-SLRT).
In the following lemma we show how to select the thresholds in order to guarantee the desired

error control for the M-SLRT.

Lemma 3. For any positive thresholds a and b we have

P0(d = 1) 6 e−b and max
A∈P

PA(d = 0) 6

(
min
A∈P

pA

)−1

e−a. (41)

Therefore, for any α, β ∈ (0, 1), (τ , d) ∈ Cα,β(P) when the thresholds are selected as follows:

b = | logα| and a = | log β| −min
A∈P

(log pA). (42)

The following theorem shows that the M-SLRT has exactly the same asymptotic optimality
properties as the G-SLRT.
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Theorem 7. Consider an arbitrary class of possibly affected subsets, P , and suppose that the
thresholds of the M-SLRT are selected so that δa,b ∈ Cα,β(P) and b ∼ | logα|, a ∼ | log β| as
αmax → 0, in particular according to (42). If r-complete convergence conditions (32) hold, then
for all 1 ≤ m 6 r we have as αmax → 0:

E0[τm] ∼

 | log β|
min
A∈P

IA0

m

∼ inf
(τ,d)∈Cα,β(P)

E0[τm], (43)

EA[τm] ∼
(
| logα|
IA1

)m
∼ inf

(τ,d)∈Cα,β(P)
EA[τm] for every A ∈ P . (44)

Moreover, if the LLRsZk
t have independent increments, then the asymptotic relationships (43)–(44)

hold for every m > 0 as long as the almost sure convergence conditions (36) are satisfied.

2.2.3. Feasibility

The implementation of the G-SLRT requires computing at each time t the generalized log-likelihood
ratio statistic

Ẑn = max
A∈P

ZAn = max
A∈P

∑
k∈A

Zk
n.

A direct computation of each ZAn for every A ∈ P can be a very computationally expensive task
when the cardinality of class P , |P|, is very large. However, the computation of Ẑn is very easy
for a class P of the form Pm,m, which contains all subsets of size at least m and at most m. In
order to see this, let us use the following notation for the order statistics: Z(1)

n ≥ . . . ≥ Z
(N)
t , i.e.,

Z
(1)
n is the top local LLR statistic and Z(N)

t is the smallest LLR at time n.
When the size of the affected subset is known in advance, i.e., m = m = m, we have

Ẑn =
m∑
k=1

Z(k)
n . (45)

Indeed, for any A ∈ Pm we have ZAn ≤
∑m

k=1 Z
(k)
n . Therefore, Ẑn ≤

∑m
k=1 Z

(k)
n , and the upper

bound is attained by the subset which consists of the m channels with the highest LLR values at
time n.

In the more general case that m < m we have

Ẑn =

m∑
k=1

Z(k)
n +

m∑
k=m+1

(Z(k)
n )+,

and the G-SLRT takes the following form:

τ̂ = inf

{
n ≥ 1 :

m∑
k=1

(
Z(k)
n

)+ ≥ b or
m∑
k=1

Z(k)
n ≤ −a

}

d̂ =

{
1 when

∑m
k=1(Z

(k)
τ̂ )+ ≥ b

0 when
∑m

k=1 Z
(k)
τ̂ ≤ −a

.

(46)
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Indeed, for any A ∈ Pm,m we have

ZAn ≤
m∑
k=1

Z(k)
n +

m∑
k=m+1

(Z(k)
n )+,

and the upper bound is attained by the subset which consists of the m channels with the top m
LLRs and the next (if any) top m−m channels that have positive LLRs.

Similarly to the G-SLRT, the M-SLRT is computationally feasible even when N is large. In-
deed, the mixture likelihood ratio takes the form

Λn = C(P)
N∑
m=1

∑
A∈P∩Pm

∏
k∈A

(
pkΛ

k
n

)
.

When in particular there is an upper and a lower bound on the size of the affected subset, i.e.,
P = Pm,m for some 1 ≤ m ≤ m ≤ N , the mixture likelihood ratio statistic takes the form

ΛN = C(P)
m∑

m=m

∑
A∈Pm

∏
k∈A

(
pkΛ

k
n

)
(47)

and its computational complexity is polynomial in the number of channels, N . However, in the
special case of complete uncertainty (m = 1,m = N ), the M-SLRT requires only O(N) opera-
tions. Indeed, if we set for simplicity pk = p and π = p/(1 + p), then the mixture likelihood ratio
in (47) admits the following representation for the class P = PN :

Λn = C(P) [(1− π)−N Λ̃n − 1] (48)

where the statistic Λ̃n is defined as follows:

Λ̃n =
N∏
k=1

(
1− π + π Λk

n

)
. (49)

Note that the statistic Λ̃n has an appealing statistical interpretation, as it is the likelihood ratio
that corresponds to the case that each channel belongs to the affected subset with probability π ∈
(0, 1). It is possible to use Λ̃n as the detection statistic and incorporate prior information by an
appropriate selection of π. For instance, if we know the exact size of the affected subset, say
P = Pm, we may set π = m/N , whereas if we know that at most m channels may be affected,
i.e., P = Pm, then we may set π = m/(2N).

2.3. Asymptotic Bayesian Theory of Quickest Changepoint Detection

The problem of rapid detection of abrupt changes in a state of a process or a system arises in
a variety of applications from engineering problems (e.g., navigation integrity monitoring Bas-
seville and Nikiforov (1993); Tartakovsky et al. (2014b)), military applications (e.g., target detec-
tion and tracking in heavy clutter Tartakovsky et al. (2014b)) to cyber security (e.g., quick detection
of attacks in computer networks Kent (2000); Tartakovsky (2013b); Tartakovsky et al. (2006a,b,
2014b)). In the present project, we are interested in a sequential setting assuming that as long as
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the behavior of the observation process is consistent with a “normal” (initial in-control) state, we
allow the process to continue. If the state changes, then we need to detect this event as rapidly as
possible while controlling for the risk of false alarms. In other words, we are interested in design-
ing the quickest change-point detection procedure that optimizes the tradeoff between a measure
of detection delay and a measure of the frequency of false alarms.

In the beginning of the 1960s, Shiryaev (1963) developed a Bayesian sequential changepoint
detection (quickest disorder detection) theory in the iid case assuming that the observations are
independent and identically distributed (iid) according to a distribution F pre-change and another
distribution G post-change and with the prior distribution of the change point being geometric. In
particular, Shiryaev (1963) proved that the detection procedure that is based on thresholding the
posterior probability of the change being active before the current time is strictly optimal, mini-
mizing the average delay to detection in the class of procedures with a given probability of false
alarm. Tartakovsky and Veeravalli (2005) generalized Shiryaev’s theory for the non-iid case that
covers very general discrete-time non-iid stochastic models and a wide class of prior distributions
that include distributions with both exponential tails and heavy tails. In particular, it was proved
that the Shiryaev detection procedure is asymptotically optimal – it minimizes the average delay
to detection as well as higher moments of the detection delay as the probability of a false alarm
vanishes. Baron and Tartakovsky (2006) developed an asymptotic Bayesian theory for general
continuos-time stochastic processes.

The key assumption in general asymptotic theories developed in Baron and Tartakovsky (2006);
Tartakovsky and Veeravalli (2005) is a certain stability property of the log-likelihood ratio process
between the “change” and “no-change” hypotheses, which was expressed in the form of the strong
law of large numbers with a positive and finite number and its strengthened r-quick version. How-
ever, it is not easy (and in fact can be quite difficult) to verify r-quick convergence in particular
applications and examples. For this reason, it was conjectured inBaron and Tartakovsky (2006);
Tartakovsky and Veeravalli (2005) that essentially the same asymptotic results may be obtained
under a weaker r-complete version of the strong law of large numbers for the log-likelihood ratio.
In fact, in most examples provided in Baron and Tartakovsky (2006); Tartakovsky and Veeravalli
(2005) and in the recent book by Tartakovsky et al. (2014b), verification of the r-quick convergence
is replaced by verification of the r-complete convergence. Our main goal in this project is to con-
firm this conjecture, proving that the Shiryaev changepoint detection procedure is asymptotically
optimal under the r-complete convergence condition for the suitably normalized log-likelihood
ratio process.

In the following, we deal only with discrete time t = n ∈ Z+ = {0, 1, 2, . . . }. The continuous
time case t ∈ R+ = [0,∞) is more “delicate” and will be considered elsewhere. Having said that,
let (Ω,F ,Fn,P), n ∈ Z+ be a filtered probability space, where the sub-σ-algebra Fn = σ(Xn) of
F is assumed to be generated by the process Xn = {Xt}16t6n observed up to time n. Let P0 and
P∞ be two probability measures defined on this space, which are assumed to be mutually locally
absolutely continuos, so that the restrictions of these measures Pn0 and Pn∞ to the sigma-algebras
Fn are mutually absolutely continuous for all n > 1.

We are interested in the following changepoint problem. In a “normal” mode, the observed
process Xn follows the measure P∞, and at an unknown time ν (ν > 0) something happens and
Xn follows the measure P0. The goal is to detect the change as soon as possible after it occurs,
subject to a constraint on the risk of false alarms. The exact optimality criteria will be specified in
Section 2.3.2.
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2.3.1. A General Changepoint Model

Let pj(Xn), j = ∞, 0 denote densities of Pnj (with respect to some non-degenerate σ-finite mea-
sure), where Xn = (X1, . . . , Xn) is the sample of size n. For a fixed ν ∈ Z+, the change induces a
probability measure Pν (correspondingly density pν(Xn) = p(Xn|ν)), which is a combination of
the pre- and post-change densities:

pν(X
n) = p∞(Xν) · p0(Xn

ν+1|Xν) =
ν∏
i=1

p∞(Xi|Xi−1) ·
n∏

i=ν+1

p0(Xi|Xi−1), (50)

where Xn
m = (Xm, . . . , Xn) and pj(Xn|Xn−1) is the conditional density of Xn given Xn−1. In the

sequel we assume that ν is the serial number of the last pre-change observation. Note that in general
the conditional densities p0(Xi|Xi−1), i = ν+ 1, ν+ 2, . . . may depend on the changepoint ν, i.e.,
p0(Xi|Xi−1) = p

(ν)
0 (Xi|Xi−1) for i > ν. Certainly the densities pj(Xi|Xi−1) = pj,i(Xi|Xi−1),

j = 0,∞ may depend on i.
In a particular iid case, addressed in detail in the past the observations are independent and iden-

tically distributed (iid) with density f∞(x) in the normal (pre-change) mode and with another den-
sity f0(x) in the abnormal (post-change) mode, i.e., in this case, (50) holds with p∞(Xi|Xi−1) =
f∞(Xi) and p0(Xi|Xi−1) = f0(Xi).

We are interested in a Bayesian setting where the change point ν is assumed to be a random
variable independent of the observations with prior probability distribution Πn = P(ν 6 n),
n ∈ Z+. We also write πk = P(ν = k) for the probability on non-negative integers, k = 0, 1, 2, . . . .
Formally, we allow the change point ν to take negative values too, but the detailed distribution for
k < 0 is not important. The only value we need is the cumulative probability q = P(ν < 0). The
probability P(ν 6 0) = q + π0 is the probability of the “atom” associated with the event that the
change already took place before the observations became available.

In the past, the typical choice for the prior distribution was (zero modified) geometric distribu-
tion,

P(ν < 0) = q and P(ν = k) = (1− q)ρ(1− ρ)k for k = 0, 1, 2, . . . , (51)

where 0 6 q < 1, 0 < ρ < 1.
In the rest of the paper, we consider an arbitrary prior distribution that belongs to the class of

distributions that satisfy the following condition:

C. For some 0 6 µ <∞,

lim
n→∞

| log(1− Πn)|
n

= µ. (52)

In the case that µ = 0, we assume in addition that for some r > 1

∞∑
k=0

πk| log πk|r <∞. (53)

If µ > 0, then the prior distribution has an exponential right tail. Such distributions, as geometric
and discrete versions of gamma and logistic distributions, i.e., models with bounded hazard rate,
belong to this class. In this case, condition (53) holds automatically. If µ = 0, then the distribu-
tion has a heavy tail, i.e., such a distribution belongs to the model with a vanishing hazard rate.
However, we cannot allow this distribution to have a tail that is too heavy, which is guaranteed by
condition (53).
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2.3.2. Optimality Criteria

Any sequential detection procedure is a stopping time T for the observed process {Xn}n∈Z+ , i.e.,
T is an extended random variable, such that the event {T = n} belongs to the sigma-algebra Fn.
A false alarm is raised whenever T 6 ν. A good detection procedure should guarantee a small
delay to detection T−ν provided that there is no false alarm, while the rate (or risk) of false alarms
should be kept at a given, usually low level.

Let Pk and Ek denote the probability and the corresponding expectation when the change occurs
at time ν = k ∈ Z+. In what follows, Pπ denotes the probability measure on the Borel sigma-
algebra in R∞ × N defined as Pπ(A × J) =

∑
k∈J πkPk (A) for A ∈ B(R∞), J ⊆ N and Eπ

denotes the expectation with respect to Pπ.
In a Bayesian setting, the risk associated with the delay to detection is usually measured by the

average delay to detection

Eπ(T − ν|T > ν) =

∑∞
k=0 πkEk(T − k|T > k)P∞(T > k)

1− PFA(T )
(54)

and the risk associated with a false alarm by the weighted probability of false alarm (PFA) defined
as

PFA(T ) = Pπ(T 6 ν) =
∞∑
k=1

πkP∞(T 6 k). (55)

In (54) and (55) we use the fact that Pk(T > k) = P∞(T > k) and Pk(T 6 k) = P∞(T 6 k) for
k ∈ Z+ and that P∞(T 6 0) = 0.

For 0 < α < 1, let Cα = {T : PFA(T ) 6 α} be a class of detection procedures for which
the weighted probability of false alarm does not exceed the predefined level α. In a Bayesian
setting, the goal is to find an optimal procedure that minimizes in the class Cα the average delay to
detection, i.e.,

find Topt ∈ Cα such that Eπ(Topt − ν|Topt > ν) = inf
T∈Cα

Eπ(T − ν|T > ν).

However, except for the iid case, the solution of this problem is not tractable. For this reason, we
address the asymptotic problem of minimizing the average detection delay as α approaches zero.
For practical purposes, it is also interesting to consider the problem of minimizing higher moments
of the detection delay Eπ[(T−ν)m|T > ν] for somem > 1, i.e., to find a first-order asymptotically
optimal detection procedure To ∈ Cα that satisfies

lim
α→0

Eπ[(To − ν)m|To > ν]

infT∈Cα E
π[(T − ν)m|T > ν]

= 1. (56)

2.3.3. Change Detection Procedures

Let “Hk : ν = k” and “H∞ : ν = ∞” be the hypotheses that the change occurs at the point
0 6 k < ∞ and that the change never happens, respectively. Then, using (50), we obtain that the
likelihood ratio (LR) between these hypotheses when the sample Xn = (X1, . . . , Xn) is observed
is

dPnk
dPn∞

=
n∏

i=k+1

p0(Xi|Xi−1)

p∞(Xi|Xi−1)
, k < n.
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Write Li = p0(Xi|Xi−1)/p∞(Xi|Xi−1) and introduce the normalized average (weighted) LR

Λn =
1

P(ν > n)

(
q

n∏
i=1

Li +
n−1∑
k=0

πk

n∏
i=k+1

Li

)
, n ∈ Z+.

Note that Λ0 = q/(1− q). Let gn = P(ν < n|Xn) stand for the posterior probability of the change
being in effect up to time n. Shiryaev (1963) proved that, in the iid case, the detection procedure
Ta = inf {n : gn > a} is strictly optimal for every 0 < α < 1 – it minimizes the average detection
delay Eπ(T − ν|T > ν) if a = aα is selected so that PFA(Ta) = α and the prior distribution is
geometric. We refer to this procedure as the Shiryaev detection procedure in the general non-iid
case too. We now show that Λn = gn/(1− gn), so that the Shiryaev procedure can be written as

TA = inf {n > 1 : Λn > A} , A > 0. (57)

Indeed, gn =
∑n−1

k=−∞ P(ν = k|Xn), where

P(ν = k|Xn) =
πk
∏k

j=1 p∞(Xi|Xi−1)
∏n

i=k+1 p0(Xi|Xi−1)∑∞
k=−∞ πk

∏k
j=1 p∞(Xi|Xi−1)

∏n
i=k+1 p0(Xi|Xi−1)

=
πk
∏n

i=k+1 Li
q
∏n

i=1 Li +
∑n−1

k=0 πk
∏n

i=k+1 Li + P(ν > n)
,

and we obtain

gn =
q
∏n

i=1 Li +
∑n−1

k=0 πk
∏n

i=k+1 Li
q
∏n

i=1 Li +
∑n−1

k=0 πk
∏n

i=k+1 Li + P(ν > n)
.

Therefore,
gn

1− gn
=

1

P(ν > n)

(
q

n∏
i=1

Li +
n−1∑
k=1

πk

n∏
i=k+1

Li

)
= Λn.

In particular, in the popular case of zero modified geometric prior (51), the statistic Λn is

Λn =
q

1− q

n∏
i=1

(
Li

1− ρ

)
+ ρ

n∑
k=1

n∏
i=k

(
Li

1− ρ

)
. (58)

In the following, to avoid triviality, we assume that A > q/(1 − q), since otherwise TA = 0
with probability 1.

By Lemma 7.2.1 in Tartakovsky et al. (2014b),

PFA(TA) 6 1/(1 + A) for every A > q/(1− q), (59)

and therefore setting A = Aα = (1− α)/α guarantees that TA ∈ Cα.
Another popular change detection procedure is the Shiryaev–Roberts (SR) procedure (due to

Shiryaev (1963) and Roberts (1966)) given by the stopping time

T̃B = inf {n > 1 : Rn > B} , B > 0, (60)
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where the statistic Rn, the SR statistic, is given by

Rn =
n∑
k=1

n∏
i=k

Li, n > 0 (R0 = 0). (61)

The statistic Rn can be viewed as a limit of the statistic Λn/ρ as ρ→ 0 when the prior distribution
of the change point is geometric (51) with q = 0. Indeed, see (58).

2.3.4. r-Quick Convergence Versus r-Complete Convergence

Introduce the LLRs

Zi = log
p0(Xi|Xi−1)

p∞(Xi|Xi−1)
, λkk+n = log

dPk+n
k

dPk+n
∞

=
k+n∑
i=k+1

Zi, n > 1.

We need the following two definitions.

Definition 3. Let r > 0. For k = 0, 1, 2, . . . , we say that the normalized LLR n−1λkk+n converges
r-quickly to a constant I as n → ∞ under probability Pk if Ek[Lk(ε)]r < ∞ for all ε > 0, where
Lk(ε) = sup

{
n > 1 : |n−1λkk+n − I| > ε

}
(sup{∅} = 0) is the last time when n−1λkk+n leaves

the interval [I − ε, I + ε].

Definition 4. Let r > 0. For k = 0, 1, 2, . . . , we say that the normalized LLR n−1λkk+n converges
r-completely to a constant I as n→∞ under probability Pk if for all ε > 0,

∞∑
n=1

nr−1Pk
{∣∣n−1λkk+n − I

∣∣ > ε
}
<∞. (62)

(For r = 1 this mode of convergence was introduced by Hsu and Robbins (1947).)

Note first that in general r-quick convergence is a stronger property than r-complete conver-
gence. See Lemma 2.4.1 in Tartakovsky et al. (2014b). More importantly, checking r-quick con-
vergence in applications is often much more difficult than checking r-complete convergence.

In the discrete time case, Tartakovsky and Veeravalli (2005) developed a general asymptotic
Bayesian theory of changepoint detection assuming that the LLR obeys the strong law of large
numbers (SLLN) with some positive and finite constant I , i.e.,

1

n
λkk+n

Pk−a.s.−−−−→
n→∞

I for all k ∈ Z+, (63)

with a certain rate of convergence expressed via the r-quick convergence, specifically assuming in
addition that for some r > 1

∞∑
k=0

πkEk[Lk(ε)]
r <∞. (64)

A similar development was performed by Baron and Tartakovsky (2006) in continuos time, assum-
ing that ∫ ∞

0

Eu[Lu(ε)]
r dΠu <∞.
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However, as we already mentioned, verification of the latter r-quick convergence condition in
particular examples is not an easy task.

In Baron and Tartakovsky (2006); Tartakovsky and Veeravalli (2005), it was conjectured that
all asymptotic results, including near optimality of the Shiryaev procedure (in the sense defined in
(56)), hold if the r-quick convergence condition (64) is weakened into the r-complete convergence

∞∑
k=0

πk

[
∞∑
n=1

nr−1Pk
{∣∣n−1λkk+n − I

∣∣ > ε
}]

<∞

(with an obvious modification in continuous time). In the following subsections, we justify this
conjecture.

2.3.5. Asymptotic Operating Characteristics and Optimality of the Shiryaev Procedure

In this subsection, we present the main results related to asymptotic optimality of the Shiryaev
detection procedure in the general non-iid case as well as in the case of independent observations.

The following lemma, that establishes the asymptotic lower bounds for moments of the detec-
tion delay, will be used for proving asymptotic optimality properties.

Lemma 4. Let TA be the Shiryaev changepoint detection procedure defined in (57). Let, for some
µ > 0, the prior distribution of the change point satisfy condition (52). Assume that for some
positive and finite I

lim
M→∞

Pk

(
1

M
max

16n6M
λkk+n > (1 + ε)I

)
= 0 for all ε > 0 and all k ∈ Z+. (65)

Then, for all m > 0,

lim inf
α→0

infT∈Cα E
π [(T − ν)m |T > ν]

| logα|m
>

1

(I + µ)m
. (66)

and

lim inf
A→∞

Eπ [(TA − ν)m |TA > ν]

(logA)m
>

1

(I + µ)m
. (67)

Define

Υk,r(ε) =
∞∑
n=1

nr−1Pk

(
1

n
λkk+n < I − ε

)
. (68)

Recall that by (59), PFA(TA) 6 (1 + A)−1 for any 0 < A < q/(1 − q), which implies that
PFA(TAα) 6 α (i.e., TAα ∈ Cα) for any 0 < α < 1− q if A = Aα = (1− α)/α.

The following theorem is the main result in the general non-iid case, which shows that the
Shiryaev detection procedure is asymptotically optimal under mild conditions for the observations
and prior distributions.

Theorem 8. Let TA be the Shiryaev changepoint detection procedure defined in (57). Let r > 1
and let the prior distribution of the change point satisfy condition (C). Assume that for some
number 0 < I <∞ condition (65) is satisfied and that the following condition holds as well

∞∑
k=0

πkΥk,r(ε) <∞ for all ε > 0. (69)
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(i) Then for all 0 < m 6 r

lim
A→∞

Eπ[(TA − ν)m|TA > ν]

(logA)m
=

1

(I + µ)m
. (70)

(ii) If A = Aα = (1 − α)/α, where 0 < α < 1 − q, then TAα ∈ Cα and it is asymptotically
optimal as α → 0 in class Cα, minimizing moments of the detection delay up to order r, i.e., for
all 0 < m 6 r,

lim
α→0

infT∈Cα E
π[(T − ν)m|T > ν]

Eπ[(TAα − ν)m|TAα > ν]
= 1. (71)

Also, the following first-order asymptotic approximations hold:

inf
T∈Cα

Eπ[(T − ν)m|T > ν] ∼ Eπ[(TAα − ν)m|TAα > ν] ∼
(
| logα|
I + µ

)m
as α→ 0. (72)

This assertion also holds if A = Aα is selected so that PFA(TAα) 6 α and logAα ∼ | logα| as
α→ 0.

Corollary 1. Let r > 1. Let the prior distribution of the change point satisfy condition (C).
Assume that for some 0 < I <∞

∞∑
k=0

πk

[
∞∑
n=1

nr−1Pk

(∣∣∣∣ 1nλkk+n − I
∣∣∣∣ > ε

)]
<∞ for all ε > 0. (73)

Then (70), (71) and (72) hold true.

The above results show that the lower bounds (66) and (67) for moments of the detection delay
hold whenever the LLR process λkk+n obeys the SLLN (63), since in this case condition (65) is
satisfied. However, in general, an almost sure convergence (63) is not sufficient for obtaining the
upper bounds, and therefore, for asymptotic optimality of the Shiryaev procedure. In fact, this
condition does not even guarantee finiteness of the average delay to detection Eπ(TA− ν|TA > ν),
and to obtain meaningful results we need to strengthen the SLLN into the r-complete version. On
the other hand, in the iid case, where conditioned on ν = k the observations X1, . . . , Xk are iid
with pre-change density f∞(x) andXk+1, Xk+2, . . . are iid with post-change density f0(x), the sit-
uation is dramatically different. By Theorem 4 of Tartakovsky and Veeravalli (2005), the Shiryaev
procedure asymptotically (as α → 0) minimizes all positive moments of the detection delay in
class Cα if the prior distribution is geometric and the Kullback–Leibler information number

K = E0λ
0
1 =

∫
log

(
f0(x)

f∞(x)

)
dµ(x) (74)

is positive and finite.
We now extend this result to the case where observations are independent, but not necessarily

identically distributed, i.e., p∞(Xi|Xi−1) = f∞,i(Xi) and p0(Xi|Xi−1) = f0,i(Xi) in (50). More
generally, we may assume that the increments Zi of the LLR λkn =

∑n
i=k+1 Zi are independent,

which is always the case if the observations are independent. This slight generalization is im-
portant for certain examples with dependent observations that lead to the LLR with independent
increments.
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Theorem 9. Let TA be the Shiryaev changepoint detection procedure defined in (57). Let r > 1.
Assume that the LLR process {λkk+n}n>1 has independent, not necessarily identically distributed
increments under Pk, k ∈ Z+. Suppose that condition (65) holds and the following condition

lim
n→∞

Pk

(
1

n
λ``+n < I − ε

)
= 0 for all ε > 0, all ` > k and all k ∈ Z+ (75)

is satisfied. Let the prior distribution of the change point be geometric (51) with q = 0. Then
relations (70), (71) and (72) hold true for all m > 0 with µ = | log(1 − ρ)|. Therefore, the
Shiryaev procedure TAα minimizes asymptotically as α → 0 all positive moments of the detection
delay in class Cα.

The idea of relaxing the r-complete convergence condition by condition (75) is based on split-
ting integration, when obtaining the upper bound for the expectation Ek[(TA − k)+]r, into a se-
quence of intervals (cycles) of the size NA ≈ logA/(I + µ) and then showing that Pk(TA − k >
`NA) 6 δ`, ` = 1, 2, . . . for some small δ under condition (75), using independence of the LLR
increments.

There are many examples associated with Markov and Hidden Markov models (and even more
general) that show that the developed theory is useful since the suggested r-complete convergence
conditions hold. These examples may be found in Pergamenchtchikov and Tartakovsky (Submitted
in 2016); Tartakovsky (Submitted in 2016).

2.4. Asymptotic Pointwise and Minimax Theory of Quickest Changepoint Detection

In the area of quickest detection, there are four conventional approaches to the optimum tradeoff
problem: Bayesian, generalized Bayesian, multicyclic detection of changes in a stationary regime,
and minimax (see Tartakovsky et al. (2014b, Ch 6)). The Bayesian problem was considered in the
previous section where we developed a general Bayesian change detection theory.

By contrast, in a minimax formulation, the change point is assumed to be an unknown non-
random number and the goal is to minimize the worst-case delay (with respect to the point of
change) subject to a lower bound on the mean time until false alarm. Specifically, Lorden (1971)
suggested the worst-worst-case average delay to detection measure

ESADD(τ) = sup
ν>0

ess supEν(τ − ν|τ > ν,Fν)

that should be minimized in the class of procedures Hγ = {τ : E∞τ > γ} for which the average
run length (mean time) to false alarm E∞τ is not smaller than a given number γ > 1. Here τ is a
generic change detection procedure (stopping time), Eν stands for the operator of expectation when
the change point is ν (ν = ∞ corresponds to a no-change scenario) and Fν = σ(X1, . . . , Xν) is
the sigma-algebra generated by the first ν observations X1, . . . , Xν . Lorden (1971) developed an
asymptotic minimax theory of change detection (in the iid case) as γ → ∞, proving in particular
that Page’s CUSUM procedure is asymptotically first-order minimax. Later Moustakides (1986)
established strict optimality of CUSUM for any value of the average run length to false alarm γ >
1. In the 1980s, Pollak (1985) introduced a less pessimistic worst-case detection delay measure —
maximal conditional average delay to detection,

SAD2D(τ) = sup
ν>0

Eν(τ − ν|τ > ν), (76)
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and found an almost optimal procedure that minimizes SAD2D(τ) subject to the constraint on the
average run length to false alarm (i.e., in the class Hγ) as γ becomes large. Pollak’s idea was to
modify the Shiryaev–Roberts statistic by randomization of the initial condition in order to make
it an equalizer. Pollak proved that the randomized Shiryaev–Roberts procedure that starts from a
random point sampled from the quasi-stationary distribution of the Shiryaev–Roberts statistic is
asymptotically nearly minimax within an additive vanishing term.

In the early stages the theoretical development was focused primarily on the iid case. However,
in practice the observations may be non-identically distributed and dependent. A general asymp-
totic minimax theory of change-point detection for non-iid models was developed by Lai (1995,
1998) (see also Fuh (2003) for hidden Markov models with a finite state-space). In particular, for a
low false alarm rate (large γ) the asymptotic minimaxity of the CUSUM procedure was established
in Fuh (2003); Lai (1998).

In the iid case, the suitably standardized distributions of the stopping times of the CUSUM
and Shiryaev–Roberts detection procedures are asymptotically exponential for large thresholds
and fit well into the geometric distribution even for a moderate false alarm rate (see Pollak and
Tartakovsky (2009b)). In this case, the average run length to false alarm is an appropriate measure
of false alarms. However, for non-iid models the limiting distribution is not guaranteed to be
exponential or even close to it. In general, we cannot even guarantee that large values of the average
run length to false alarm will produce small values of the maximal local false alarm probability.
Therefore, the average run length to false alarm is not appropriate in general, and instead it is more
adequate to use the local conditional false alarm probability, as suggested in Tartakovsky (2005);
Tartakovsky et al. (2014b). This issue is extremely important for non-iid models, as a discussion
in Mei (2008); Tartakovsky (2008) shows.

In the project, we pursue two objectives. First, we introduce two novel classes of changepoint
detection procedures, which, instead of imposing a lower bound on the average run length to false
alarm, require more adequate upper bounds on the uniform probability of false alarm or uniform
conditional probability of false alarm in the spirit of works by Lai (1998), Tartakovsky (2005)
and Tartakovsky et al. (2014b). However, these classes slightly differ from those proposed in Lai
(1998); Tartakovsky (2005); Tartakovsky et al. (2014b). This modification allows us to substan-
tially relax Lai’s essential supremum conditions Lai (1998), which do not hold for certain interest-
ing practical models. In fact, our conditions are equivalent to the uniform version of the complete
convergence for the log-likelihood ratio processes, i.e., they are related to the rate of convergence in
the strong law of large numbers for the log-likelihood ratio between the “change” and “no-change”
hypotheses. We concentrate on a minimax problem of minimizing Pollak’s maximal conditional
average delay to detection defined in (76) as well as on a pointwise problem of minimizing the
conditional average delay to detection Eν(τ − ν|τ > ν) for every change point ν > 0. For the
sake of completeness, we also consider the other popular risks supν>0 Eν(τ − ν)+ and Eν(τ − ν)+,
ν > 0, while we strongly believe that the conditional versions Eν(τ − ν|τ > ν) and (76) are more
appropriate for most applications. We consider extremely general non-iid stochastic models for the
observations, and it is our goal to find reasonable sufficient conditions for the observation models
under which the Shiryaev–Roberts (or CUSUM) procedure is asymptotically optimal. To achieve
the first goal we exploit the asymptotic Bayesian theory of changepoint detection developed in the
previous section that offers a constructive and flexible approach for studying asymptotic efficiency
of Bayesian type procedures. It turns out that a similar method can be used for the analysis of min-
imax risks and that the complete convergence type conditions for the log-likelihood ratio are also
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sufficient in the minimax setting. These sufficient conditions as well as the main results related to
asymptotic optimality of the Shiryaev–Roberts procedure in the classes of procedures with upper
bounds on the weighted false alarm probability and local false alarm probabilities are given below.

The second objective is to find a method for verification of the required sufficient conditions
in a number of particular, still very general, challenging models. The natural question is how
one may check the proposed sufficient conditions and even whether there are more or less general
models, except of course the iid case, for which these conditions hold. To this end, we focus on
the class of data models for which one can exploit the method of geometric ergodicity for ho-
mogeneous Markov processes. These results can be found in Section 5 of our recently submitted
paper Pergamenchtchikov and Tartakovsky (Submitted in 2016) and show that our sufficient con-
ditions for pointwise and minimax optimality hold for homogeneous Markov ergodic processes. In
Pergamenchtchikov and Tartakovsky (Submitted in 2016), these conditions are further illustrated
for several examples that include autoregressive, autoregressive GARCH, and other models widely
used in many applications.

2.4.1. Novel Optimality Criteria

In this project, we study the Shiryaev–Roberts (SR) procedure given by the following stopping
time

T (h) = inf

{
n > 1 :

n∑
k=1

eλ
k−1
n > h

}
, (77)

where h > 0 is some fixed positive threshold which will be specified later. We set inf{∅} = +∞.
In the iid case, this procedure has certain interesting strict optimality properties (see Pollak and
Tartakovsky (2009a) and Tartakovsky et al. (2014b)).

Our main goal is to show that the SR detection procedure T (h) is nearly optimal in pointwise
and minimax problems described below.

To describe these problems we introduce for any 0 < β < 1, m∗ > 1 and k∗ > m∗ the
following class of change detection procedures

H∗(β, k∗,m∗) =

{
τ : sup

16k6k∗−m∗
P∞(τ < k +m∗|τ > k) 6 β

}
. (78)

Note that the probability P∞(τ < k +m|τ > k) = P∞(k 6 τ < k +m|τ > k) is the conditional
probability of false alarm in the time interval [k, k +m− 1] of the length m, which we refer to as
the local conditional probability of false alarm (LCPFA).

We consider the conditional detection delay risk

R∗ν(τ) = Eν (τ − ν | τ > ν) (79)

(compare with (76)) and the following problems: the pointwise minimization, i.e., for any ν > 0

inf
τ∈H∗(β,k∗,m∗)

R∗ν(τ) ; (80)

and the minimax optimization

inf
τ∈H∗(β,k∗,m∗)

max
06ν6k∗

R∗ν(τ) . (81)
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The parameters k∗ and m∗ will be specified later.
In addition, we consider a Bayesian-type problem of minimizing the risk (79) in a class of

procedures with the given weighted probability of false alarm.

2.4.2. Asymptotic Optimality of the SR Procedure

We now proceed with tackling the pointwise and minimax problems (80) and (81) in the class
of procedures with given LCPFA. The method of establishing asymptotic optimality of the SR
procedure is based on the lower-upper bounding technique. Specifically, we first obtain asymptotic
lower bounds for the riskR∗ν(τ) in the classH∗ (β, k∗,m∗), and then we show that these asymptotic
lower bounds are attained for the SR procedure T (h) with a certain threshold h = hβ .

We do not assume any particular model or even class of models for the observations, and as a
result, there is no “structure” of the LLR process. We therefore have to impose some conditions
on the behavior of the LLR process at least for large n. It is natural to assume that there exists a
positive finite number I such that λk

n
/(n− k) converges almost surely to I under Pk, i.e.,

(A1) Assume that there exists a number I > 0 such that for any k > 0

1

n
λk
k+n

Pk−a.s.−−−−→
n→∞

I . (82)

This is always true for iid data models with

I = I(f1, f0) = E0Z1 =

∫
log

[
f1(x)

f0(x)

]
f1(x)dµ(x)

being the Kullback–Leibler information number. It turns out that the a.s. convergence condition
(82) is sufficient for obtaining lower bounds for all positive moments of the detection delay.

Next, for any 0 < β < 1, m∗ > 1 and k∗ > m∗, define

α1 = α1(β,m∗) = β + (1− %1,β)m
∗+1 (83)

and
α2 = α2(β, k∗) = β(1− %2,β)k

∗
, (84)

where
%1,β =

1

1 + | log β|
and %2,β =

%1,β

1 + | log | log β||
. (85)

To find asymptotic lower bounds for the problems (80) and (81) in addition to condition (A1)
we impose the following condition related to the growth of the window size m∗ in the LPFA:

(H1) The size of the window m∗ in (83) is a function of β, i.e. m∗ = m∗
β
, such that

lim
β→0

| logα1,β|
| log β|

= 1 , (86)

where α1,β = α1(β,m∗
β
).

For example, we can take m∗
β

= 1 + b(1 + | log β|)2c.
The following theorem establishes asymptotic lower bounds.
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Theorem 10. Assume that conditions (A1) and (H1) hold. Then, for any k∗ > m∗ and ν > 0,

lim inf
β→0

1

| log β|
inf

τ∈H∗(β,k∗,m∗)
sup
ν>0
R∗ν(τ) > lim inf

β→0

1

| log β|
inf

τ∈H∗(β,k∗,m∗)
R∗ν(τ) >

1

I
. (87)

In order to study asymptotics for the average detection delay of the SR procedure and for es-
tablishing its asymptotic optimality, we impose the following constraint on the rate of convergence
for

λ̃k,n =
1

n
λk
k+n
− I . (88)

(A2) Assume that λ̃k,n converges uniformly completely to 0 as n→∞, i.e., for any ε > 0

Υ∗(ε) =
∞∑
n=1

sup
k>0

Pk

{∣∣∣λ̃k,n∣∣∣ > ε
}
<∞ . (89)

To establish asymptotic optimality properties of the SR procedure with respect to the risks R∗ν(τ)
(for all ν > 0) and supν>0R∗ν(τ) in the class H∗ (β, k∗,m∗) we need the uniform complete con-
vergence condition (A2) as well as the following condition.

(H2) Parameters k∗ and m∗ are functions of β, i.e. k∗ = k∗
β

and m∗ = m∗
β
, such that

lim
β→0

(
| logα3,β|+ k∗

β
log(1− %2,β)

)
= +∞ and lim

β→0

| logα3,β|
| log β|

= 1 . (90)

where α3,β = α3(β, k∗
β
).

We can take, for example, the parameters k∗ = k∗
β

and m∗ = m∗
β

as

m∗
β

= 1 + b(1 + | log β|)2c and k∗
β

= 2m∗
β
. (91)

Denote by T ∗β the SR procedure T (h∗β) defined in (77) with the threshold h∗β given by

h∗
β

=
1− α3,β

%2,βα3,β

. (92)

Theorem 11. If conditions (H1) and (H2) hold, then, for any 0 < β < 1, the SR procedure
T ∗β with the threshold h∗β given by (92) belongs to the class H∗ (β, k∗,m∗). Assume that in addi-
tion condition (A2) is satisfied. Then the SR procedure T ∗β is first-order asymptotically uniformly
poitwise optimal and minimax in the classH∗ (β, k∗,m∗), i.e.,

lim
β→0

infτ∈H∗(β,k∗,m∗)R∗ν(τ)

R∗ν(T ∗β )
= 1 for all fixed ν > 0 . (93)

and

lim
β→0

infτ∈H∗(β,k∗,m∗) max06ν6k∗β
R∗ν(τ)

max06ν6k∗β
R∗ν(T ∗β )

= 1 . (94)
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Also, as β → 0, the following first-order asymptotic approximations hold for the pointwise and
maximal risks:

R∗ν(T ∗β ) ∼ inf
τ∈H(β,k∗,m∗)

R∗ν(τ) ∼ | log β|
I

for any ν > 0 (95)

and

sup
06ν6k∗β

R∗ν(T ∗β ) ∼ inf
τ∈H(β,k∗,m∗)

sup
06ν6k∗β

R∗ν(τ) ∼ | log β|
I

. (96)

The results of Theorem 11 can be extended to higher moments of the detection delay by
strengthening the complete convergence with the uniform r-complete convergence. More specifi-
cally, the following asymptotic optimality result holds true.

Theorem 12. Assume that conditions (H1) and (H2) hold, and in addition, for some r > 1 the
uniform r-complete convergence condition

∞∑
n=1

nr−1 sup
k>0

Pk

{∣∣∣λ̃k,n∣∣∣ > ε
}
<∞ for all ε > 0 (97)

is satisfied. Then, for any 0 < β < 1, the SR procedure T ∗β with the threshold h∗β given by (92)
belongs to the classH∗ (β, k∗,m∗) and as β → 0 for any 0 < ` 6 r

Eν
[
(T ∗β − ν)`|T ∗β > ν

]
∼ inf

τ∈H∗(β,k∗,m∗)
Eν
[
(τ − ν)`|τ > ν

]
∼
(
| log β|
I

)`
for all ν > 0

(98)

and
max

06ν6k∗β
Eν
[
(T ∗β − ν)`|T ∗β > ν

]
∼ inf

τ∈H∗(β,k∗,m∗)
max

06ν6k∗β
Eν
[
(τ − ν)`|τ > ν

]
∼
(
| log β|
I

)`
.

(99)

Therefore, the SR procedure T ∗β is first-order asymptotically uniformly pointwise optimal and also
minimax in the classH∗ (β, k∗,m∗) with respect to the moments of the detection delay up to order
r.

3. POTENTIAL IMPACTS
The research produces general theories of sequential hypothesis testing and quickest changepoint
detection for very general non-iid stochastic models, as well as novel nearly optimal tests of com-
posite hypotheses and changepoint detection procedures that significantly impact the effectiveness
of DOD in recognizing unusual patterns of activity in heterogeneous volumes of data and auto-
matic threat detection. We believe that our research results in practical and scalable algorithms for
on-line detection and recognition of threats, in particular in cyber security applications related to
rapid detection of intrusions in computer networks with very low false alarm rates.
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A. G. Tartakovsky, B. L. Rozovskii, R. B. Blaźek, and H. Kim. Detection of intrusions in informa-
tion systems by sequential change-point methods. Statistical Methodology, 3(3):252–293, July
2006b.

A. G. Tartakovsky, I. Nikiforov, and M. Basseville. Sequential Analysis: Hypothesis Testing
and Changepoint Detection. Monographs on Statistics and Applied Probability. Chapman &
Hall/CRC, Boca Raton, FL, 2014a.

A. G. Tartakovsky, I. V. Nikiforov, and M. Basseville. Sequential Analysis: Hypothesis Testing
and Changepoint Detection. Monographs on Statistics and Applied Probability. Chapman &
Hall/CRC Press, Boca Raton, London, New York, 2014b.

K.-L. Tsui, S. W. Han, W. Jiang, and W. H. Woodall. A review and comparison of likelihood based
charting methods. IIE Transactions, 44(9):724–743, Sept. 2012.

34


